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In recent years, differentially private clustering has received increasing attention. However, 
most existing differentially private clustering algorithms cannot achieve better results when 
handling non-convex datasets. To enhance knowledge extraction from data while protecting users’ 
sensitive information, we propose a density-based clustering algorithm with differential privacy. 
Specifically, we incorporate differential privacy mechanisms into the density-based clustering 
paradigm to enhance the effectiveness of differentially private clustering on non-convex datasets. 
Firstly, to avoid privacy leakage, we employ the Laplace mechanism for inject noise into the 
density during the density estimation stage. Then, we design a privacy budget allocation scheme 
in the cluster expansion stage to make it harder for attackers to access private information. 
Theoretical analysis demonstrates that our algorithm satisfies 𝜖-differential privacy. Experimental 
outcomes in synthetic and real-world datasets show that our introduced algorithm can obtain 
high-quality clustering results when dealing with non-convex datasets. In the approximation 
experiments, it is evident that our algorithm outperforms others in terms of approximation.

1. Introduction

Clustering is a fundamental issue in unsupervised learning [1]. The objective of clustering involves partitioning the group of 
datasets such that points close to one another are grouped into the same cluster, whereas those that are distant are allocated to 
separate clusters. Clustering techniques have widespread applications in various areas, including market segmentation, recommender 
systems, and educational data mining, among others [2,3]. These applications often involve sensitive user information, which could 
be unintentionally disclosed by non-private clustering algorithms.

The growing concern about user privacy motivates exploring privacy-preserving algorithms [4,5]. Differential privacy (DP), a rig-

orous mathematical theory of privacy protection, has attracted sustained research interest in recent years. In practice, this technology 
is integrated into the core offerings of prominent companies such as Google, Apple, and Microsoft, among others [6]. Informally, 
the notion of differential privacy is that the algorithm’s output should be mostly unchanged when any one input is changed, thereby 
making it difficult to infer any individual’s sensitive information. Differentially private algorithms operate in two primary modes: 
local and central. In the local model, each user will randomize the data on a local level and then send the noisy data to the server. 
Conversely, the central model involves a trusted server to which users directly submit their data for analysis within the server’s 
environment. These researches focus on the clustering problem based on central differential privacy (CDP) [7,8].
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Current research on differentially private clustering has garnered significant attention. Most of the existing studies focus on 
partition-based clustering algorithms. These algorithms have near-linear running time and obtain an approximation factor that is 
identical to the optimal non-private algorithms. The Ghazi algorithm [9] uses the DensestBall technique to reduce the approximation 
rate to the same as the optimal non-private clustering algorithm. The Vincent algorithm [10] uses the randomly shifted quadtrees 
technique to reduce the running time to close to the near-linear time �̃�(𝑛𝑘𝑑). The Alisa algorithm [11] utilizes location-sensitive 
hashing techniques to reduce communications for local differential privacy models to once.

However, these partition-based private algorithms rely on iterative optimization, which can result in over-segmentation of the 
privacy budget if the iteration count becomes too high. This leads to high noise injection and degraded clustering performance. 
In addition, real-world datasets tend to be arbitrarily shaped and are called non-convex datasets. When dealing with non-convex 
datasets, partition-based clustering is not suitable for dealing with such datasets. These algorithms inherit the intrinsic limitations of 
the partition-based clustering paradigm, which can lead to erroneous clustering.

To solve the issues, we develop density-based clustering with differential privacy, named DBDP. First, in the density estimation 
phase, we add some noise into density by using the Laplace mechanism. Then, in the cluster expansion phase, we design a new privacy 
budget assignment solution, which cause the privacy budget to decay exponentially.

The major contributions of this article are as follows.

• We propose a new algorithm for density-based clustering with differential privacy. It can detect clusters with non-convex shapes 
while ensuring privacy preservation.

• We integrate the Laplace mechanism into the density estimation phase of the original algorithm. Meanwhile, we devise a new 
privacy budget assignment solution. These techniques endow the proposed algorithm with privacy-preserving capabilities.

• We theoretically prove that DBDP satisfies 𝜖-differential privacy. In addition, the results of our experiments not only demonstrate 
the efficacy of our algorithm but also verify a high approximation between it and the original algorithm.

The following structure is adopted for the subsequent sections of this paper. In Section 2, we briefly summarize related research. 
In Section 3, preliminary details are provided on differential privacy and DBSCAN clustering. Section 4 delineates the proposed 
algorithm and its comprehensive analysis. Section 5 shows results from experiments with synthetic datasets and real-world datasets. 
In Section 6, our conclusion is presented.

2. Previous work

The research on differential privacy in clustering algorithms is widespread [12–19]. Currently, the majority of studies concentrate 
on the partition-based clustering paradigm.

There are two main directions in partition-based private clustering. The first direction involves improving classical 𝑘-means 
algorithms for satisfying definitions of differential privacy. To address the issue of privacy leakage in 𝑘-means, the SuLQ framework 
is presented by Blum et al. [20]. This method introduces the Laplace mechanism [21] in differential privacy, where noise is added to 
the center point at each iteration to satisfy differential privacy. However, the SuLQ framework suffers from the problem of privacy 
budget over-allocation. To solve this problem, Su et al. [22] propose the EUKGM algorithm. This algorithm introduces the idea of 
approximating the initial center point to achieve the purpose of reducing the number of iterations. Although these algorithms use 
differential privacy budget allocation schemes, the size of the increased noise is still determined by the algorithm’s iteration count. 
Since the iteration count is unpredictable, the injected noise increases with the number of iterations, which ultimately leads to a 
degradation of the clustering quality.

The second direction is to use a one-cluster-like approach to build private coresets [23–25]. Coresets refer to selecting 𝑛 represen-

tative points in the whole dataset to represent the whole dataset. Feldman et al. [26] introduce a differential privacy concept based on 
coresets and propose a private coresets approach. However, the method suffers from poor clustering in high-dimensional Euclidean 
space. In order to solve a problem, Balcan et al. [27] introduce the Johnson-Lindenstrauss (JL) theorem to reduce the dimension of 
the dataset to 𝑂(𝑙𝑜𝑔𝑛). In addition, they construct private coresets using a hyper-rectangular partitioning method to optimize the 
approximation ratio of the algorithm. However, the method still suffers from excessive multiplication error in the approximation 
ratio [28,29]. To solve this problem, Ghazi et al. [9] introduce the DensestBall technique to reduce the multiplication error of the 
algorithm to the constant level. To address the issue of the high time complexity of DensestBall when dealing with real data, Vincent 
et al. [10] introduce the hierarchically separated tree (HST) method. Their work makes the time complexity of the algorithm close to 
linear time. Although these studies make significant breakthroughs in the approximation ratio and time complexity of the algorithm, 
they still do not give good clustering results when dealing with non-convex datasets.

Density-based private clustering has also seen a small amount of research work recently. Wu et al. [30] propose the DP_DBSCAN 
algorithm, which adds Laplace noise in the distance metric. Ni et al. [31] introduce the DP_MCDBSCAN technique, building upon 
the foundation of DP_DBSCAN. This method selects multiple initial core objects for clustering using the farthest distance method to 
mitigate the effects of random selection on clustering outcomes. Although differentially private density clustering has made significant 
strides, such algorithms add Laplace noise to the distance metric. This approach introduces inaccuracies in the distance metric between 
data points, which can lead to unsatisfactory clustering results. In contrast, our method adds Laplace noise to the density metric stage 
2

for the purpose of privacy data protection.
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Table 1

Notations.

Notations Descriptions

𝐗 Dataset of points

D Domain of datasets

𝑛 Number of data points

𝑑 Dimension of the dataset

x𝑖 𝑖-th data point in the dataset

𝑒𝑝𝑠 Distance threshold

𝑚𝑖𝑛𝑃 𝑡𝑠 Density threshold within a given radius

dist(𝐱,𝐲) Distance between data points 𝐱 and 𝐲
𝜖 Privacy budget

Δ𝑓 Global sensitivity

ℂ Clustering results

C𝑘 𝑘-th cluster

3. Preliminaries

In this section, we introduce the concepts of differential privacy and DBSCAN. The notations used throughout this paper are 
delineated in Table 1 for convenient reference.

3.1. Differential privacy

We then recall a definition and a fundamental property of differential privacy [32]. Datasets 𝐗 and 𝐗′ are considered neighbors 
when 𝐗′ is obtained by either removing or adding a single data point from X.

Definition 1. Differential Privacy (DP). Let 𝜖, 𝛿 ∈ℝ≥0 and 𝑛 ∈ ℕ. A randomized algorithm  taking as input a dataset is said to be 
(𝜖, 𝛿)-differentially private if for any two neighboring datasets 𝐗 and 𝐗′, and for any subset 𝑆 of outputs of , the following condition 
holds:

Pr[(X) ∈ 𝑆] ≤ 𝑒𝜖 ⋅ Pr[(X′) ∈ 𝑆] + 𝛿 (1)

where Pr[⋅] refers to the probability. It represents the likelihood of an event occurring. The parameters 𝜖 and 𝛿 govern the algorithm’s 
privacy guarantee. If 𝛿 = 0, then  is said to be 𝜖-differential privacy. We assume throughout that 0 < 𝜖 ≤ 𝑂(1), and when used, 
𝛿 > 0.

The differential privacy mechanism is based on the sensitivity of the query function to evaluate the amount of added noise. The 
definition of sensitivity is as follows.

Definition 2. Sensitivity. Global sensitivity [6] is the nature of the query function 𝑓 itself, regardless of the size of the dataset. 
Sensitivity refers to the maximum change for the query results by deleting any records in the dataset. For the query function 𝑓 ∶ D →
ℝ𝑑 , the sensitivity of 𝑓 is defined as follows:

Δ𝑓 = maxX,X′ ||𝑓 (X) − 𝑓 (X′)||1 (2)

In differential privacy, Dwork [32] proposes the Laplace mechanism to achieve 𝜖-differential privacy protection by adding random 
noise following the Laplace distribution to query results.

Theorem 1. Laplace mechanism. A random variable is distributed as Lap(y) if its probability density function is 𝐿𝑎𝑝(y) = 1
2𝜆 𝑒𝑥𝑝(−

|y|
𝜆
). Let 

𝜖 > 0, and assume 𝑓 ∶ D → ℝ𝑑 has sensitivity Δ𝑓 . The mechanism with input S ∈ X and output 𝑓 (S) + (𝐿𝑎𝑝( Δ𝑓
𝜖
))𝑑 is (𝜖, 0)-differential 

privacy.

To solve complex privacy protection problems, differentially private algorithms are used. The privacy budget 𝜖 should be assigned 
to every step of this algorithm in order to control the overall level of privacy. Two compositional properties of differential privacy 
are sequential composability and parallel composability.

(i) Sequential composability: The algorithm  applies successively two algorithms 1 and 2, which are respectively 𝜖1-DP and 
𝜖2-DP. The resulting algorithm  is (𝜖1 + 𝜖2)-DP. If 1 and 2 run on two distinct parts of the dataset, then  is max(𝜖1, 𝜖2)-DP.

(ii) Parallel composability: If : D1 × D2 → Z satisfies that for all 𝐗 ∈ D𝟏, the algorithm (𝐗, ⋅) is 𝜖1-DP, and some algorithm 
3

 ∶ D2 → D1 is 𝜖2-DP, then the algorithm 𝑋→((𝐗), 𝐗) is (𝜖1 + 𝜖2)-DP.
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Fig. 1. Illustration of a few concepts in DBSCAN.

3.2. DBSCAN algorithm

Partition-based clustering and model-based clustering algorithms inherently generate spherical clusters, rendering renders them 
inadequate for handling clusters with arbitrary shapes. Additionally, these algorithms require the a priori determination of the number 
of clusters, limiting their flexibility and adaptability to varying datasets. Although hierarchical clustering algorithms can potentially 
identify clusters with various shapes, their flexibility in this regard is still somewhat limited. Furthermore, hierarchical clustering 
algorithms is inherently sensitive to outliers since they relies on distance metrics to construct the clustering hierarchy. Density-based 
clustering algorithms such as DBSCAN have become increasingly popular [33,34]. It could recognize the arbitrarily formed clusters 
and those with noise [35,36] (i.e., outliers). DBSCAN relies on two crucial parameters.

(i) The parameter 𝑒𝑝𝑠 defines a radius, where two points are neighbors if their distance is less than or equal to 𝑒𝑝𝑠.
(ii) The parameter 𝑚𝑖𝑛𝑃 𝑡𝑠 sets the minimum number of neighbors within a specified radius.

Based on these parameters, DBSCAN establishes a set of criteria. [37,38]:

• Core point: A point qualifies as a core point if it has a radius of 𝑒𝑝𝑠 and is surrounded by at least 𝑚𝑖𝑛𝑃 𝑡𝑠 points (inclusive of 
itself).

• Reachability: A point x𝑞 is directly reachable from x𝑝 if the distance between the point x𝑞 and the core point x𝑝 is within 𝑒𝑝𝑠.
• Density-connectedness: Two points x𝑝 and x𝑞 exhibit density connectedness if there exists a direct or transitive path from x𝑝

to x𝑞 .
• Border point: A point is a border point if it is reachable from a core point and the area around it has fewer points than 𝑚𝑖𝑛𝑃 𝑡𝑠.
• Noise point: If a point is neither a core point nor a point that can be reached from a core point, then that point is a noise point.

To facilitate understanding of the above concepts, we provide an example in Fig. 1. We set 𝑚𝑖𝑛𝑃 𝑡𝑠 to 3. Core points, depicted in 
green, possess a minimum of three neighboring points in a radius of 𝑒𝑝𝑠. This area is shown with the green circles in the figure. The 
blue points are border points because they are reachable from a core point and have fewer than 3 points within their neighborhood. 
The yellow point is classified as a noise point since it lies outside the core and is unreachable from all core points. The blue double 
arrows signify that the data points at each end are directly reachable; for instance, 𝑞 can be reached directly from 𝑝. A single red 
arrow denotes that the data points are density-connected, as in the case of 𝑝 being directly reachable from 𝑡, and 𝑞 being transitively 
reachable from 𝑡.

4. Differentially private DBSCAN

One of the crucial techniques in density-based methods is DBSCAN [39,40]. In DBSCAN, clusters can be assumed as exhibiting 
connectivity within areas of high density, which are separated by areas of low density. Hence, an attacker can exploit the information 
on radius and density to deduce members’ details, thereby compromising privacy. We have modified this approach to incorporate 
privacy considerations as follows.

4.1. Overview

As shown in Fig. 2, DBDP includes three stages: density estimation, core point identification, and cluster expansion. Below is a 
4

presentation of each step in the overview.
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Fig. 2. The architecture of DBDP.

Density estimation: To construct a differentially private DBSCAN, the DBDP algorithm initially sets some parameters, such as the 
distance threshold (𝑒𝑝𝑠), the smallest neighborhood number (𝑚𝑖𝑛𝑃 𝑡𝑠), and the privacy budget (𝜖). Next, the DBDP algorithm counts 
points in the user-defined radius 𝑒𝑝𝑠 as the density of each data point. Finally, the DBDP algorithm utilizes the Laplace mechanism 
to add Laplace noise to the density values of each point.

Core point identification: In this step, we identify core points based on the density obtained from the added Laplace noise, 
𝐿𝑎𝑝( Δ𝑓

𝜖1
). It is important to note that at this stage, in addition to core points, there are also non-core points that include both the final 

noise points and boundary points. Specifically, a point is classified as a core point if its density, after adding Laplace noise, exceeds 
the threshold 𝑚𝑖𝑛𝑃 𝑡𝑠.

Cluster expansion: In this step, the DBDP algorithm connects all the core points with reachability to expand clusters. During the 
division of clusters, we give different privacy budget levels, to achieve privacy protection.

4.2. Algorithm

To overcome the limitations of differentially private partition-based clustering, we propose a DBDP algorithm. Our algorithm runs 
in polynomial-time private clustering algorithm, and can effectively handle non-convex datasets while maintaining high precision in 
the clustering results.

Let X = {x1, x2, ..., x𝑛} ∈ℝ𝑑 be a dataset consisting of 𝑛 data points, where each data point has 𝑑 features, i.e., x𝑖 = 𝑥𝑖1, 𝑥𝑖2, ..., 𝑥𝑖𝑑 .

In the dataset X with the 𝑑-dimensional space, for two points x𝑖 and x𝑗 , we let dist(x𝑖, x𝑗 ) ∶= ||x𝑖 − x𝑗 || =
√∑𝑑

𝑙=1(𝑥𝑖𝑙 − 𝑥𝑗𝑙)2 be 
the Euclidean distance between x𝑖 and x𝑗 . We calculate the Euclidean distance for every pair of points.

In order to provide a clearer description of the density estimation and the core point identification in the proposed algorithm, we 
give the following definitions.

Definition 3. Density. Let 𝑒𝑝𝑠 > 0 and x𝑖 ∈ X. The density of x𝑖 is:

𝐷𝑒𝑛𝑁𝑆 (x𝑖) = |{x𝑗 ∈ X|dist(x𝑖,x𝑗 ) ≤ 𝑒𝑝𝑠}|+𝐿𝑎𝑝(Δ𝑓𝜖1 ) (3)

Definition 4. Core point. A point x𝑖 is a core point if its density is greater than or equal to the density threshold 𝑚𝑖𝑛𝑃 𝑡𝑠, i.e. 
𝐷𝑒𝑛𝑁𝑆 (x𝑖) ≥𝑚𝑖𝑛𝑃 𝑡𝑠. Conversely, it is a non-core point, including noise points and boundary points.

Algorithm 1 summarizes the DBDP algorithm.

We randomly select a point x𝑖 from the dataset X. Then, we calculate its 𝑒𝑝𝑠-neighborhood as neighborPts which includes all other 
points whose Euclidean distance from x𝑖 is less than or equal to 𝑒𝑝𝑠. Then we use the Laplace mechanism to add noise 𝐿𝑎𝑝( Δ𝑓

𝜖1
) to 

the size of neighborPts as 𝐷𝑒𝑛𝑁𝑆 (x𝑖). If 𝑚𝑖𝑛𝑃 𝑡𝑠 >𝐷𝑒𝑛𝑁𝑆 (x𝑖), this point x𝑖 will be considered as a non-core point (Algorithm 1, lines 
2-7); otherwise, core point to be considered. If the point is core point, then we call the cluster expansion(Algorithm 1, lines 8-19).

We assign the point x𝑖 to the cluster C𝑘 (the 𝑘-th cluster) and randomly choose a point x′
𝑖
from the 𝑒𝑝𝑠-neighborhood of x𝑖. The 𝑒𝑝𝑠-

𝑘

5

neighborhood of x′
𝑖
, denoted as neighborPts′, is determined. We apply the Laplacian mechanism to add noise, calculated as 𝐿𝑎𝑝( 2 Δ𝑓

𝜖2
), 
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to the number of data points in neighborPts′ and denote it as 𝑁𝑢𝑚𝑐𝐿𝑎𝑝(x′𝑖). (Algorithm 1, lines 11-15). If 𝑚𝑖𝑛𝑃 𝑡𝑠 ≤𝑁𝑢𝑚𝑐𝐿𝑎𝑝(x′𝑖), this 
point x′

𝑖
will be considered a core point and neighborPts′ will be merged into neighborPts. This process continues until no more points 

are in neighborPts (Algorithm 1, lines 16-17).

The privacy budget 𝜖 allocation is important. We divide 𝜖 into 𝜖1 and 𝜖2, and 𝜖2 is subsequently divided into 𝜖221 ,
𝜖2
22 ,...,

𝜖2
2𝑘 . The 

privacy budget 𝜖1 is used for distinguishing core and non-core points. The privacy budget 𝜖2 is used for cluster expansion. Specifically, 
in the cluster expansion stage, each class is assigned a certain privacy budget. As shown in Fig. 2, the privacy budget allocated to the 
first class is 𝜖221 , and the second class is assigned a privacy budget of 𝜖222 . Applying varying privacy budgets results in different levels 
of noise being introduced. This method prevents the accumulation of privacy leakage through multiple queries, thereby enhancing 
privacy.

Algorithm 1 DBDP algorithm.

Input: X = {x1,⋯ ,x𝑛}, 𝑒𝑝𝑠, 𝑀𝑖𝑛𝑃 𝑡𝑠, 𝜖
Output: ℂ = {C1, C2, ⋯ , C𝑘}
𝑘 = 1, 𝜖 = 𝜖1 + 𝜖2
for each unvisited point x𝑖 in dataset X do

mark x𝑖 as visited

𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑃 𝑡𝑠 = all points within x𝑖 𝑒𝑝𝑠-neighborhood

𝐷𝑒𝑛𝑁𝑆 (x𝑖)=sizeof(𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑃 𝑡𝑠)+Lap(
Δ𝑓
𝜖1

)

if 𝐷𝑒𝑛𝑁𝑆 (x𝑖) < 𝑚𝑖𝑛𝑃 𝑡𝑠 then
mark x𝑖 as non-core

else
𝑘 = 𝑘+1

add x𝑖 to cluster C𝑘
for each point x′

𝑖
in 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑃 𝑡𝑠 do

if x′
𝑖

is not visited then
mark x′

𝑖
as visited

𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑃 𝑡𝑠′=all points within x′
𝑖
𝑒𝑝𝑠-neighborhood

𝐷𝑒𝑛𝑁𝑆 (x′
𝑖
)=sizeof(𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑃 𝑡𝑠′)+Lap(

Δ𝑓 ⋅2𝑘

𝜖2
)

if 𝐷𝑒𝑛𝑁𝑆 (x′
𝑖
) ≥ 𝑚𝑖𝑛𝑃 𝑡𝑠 then

𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑃 𝑡𝑠 =𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑃 𝑡𝑠 ∪𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑃 𝑡𝑠′

if x′
𝑖

is not yet member of any cluster then
add x′

𝑖
to cluster C𝑘

4.3. Privacy and analysis of DBDP

This subsection offers theoretical validations supporting DBDP’s privacy and practicality guarantees.

Theorem 2. The global sensitivity of DBDP is Δ𝑓 = 1.

Proof. In the DBDP framework, the query function is designed to count the number of points within the 𝑒𝑝𝑠-neighborhood of a given 
point, denoted as 𝑓 ∶ 𝑒𝑝𝑠 neighborhood query. Consider datasets X and X′ that makes a difference of one point x𝑡, i.e., X = X′ ∪ {x𝑡}. 
Without loss of generality, let x𝑖 and x𝑗 are point common to both datasets, i.e., {x𝑖, x𝑗} ∈ X ∩ X′. The point x𝑡 is an 𝑒𝑝𝑠 neighbor of 
x𝑖 and x𝑡 is not an 𝑒𝑝𝑠 neighbor of x𝑗 . When an 𝑒𝑝𝑠-neighborhood query is conducted for x𝑖, the discrepancy in the query results is 
1, i.e., ||𝑓X(x𝑖) − 𝑓X′ (x𝑖)|| = 1. When an 𝑒𝑝𝑠-neighborhood query is conducted for x𝑗 , and the discrepancy in the query results is 0, 
i.e., ||𝑓X(x𝑗 ) − 𝑓X′ (x𝑗 )|| = 0. For all points, the query result gap is either 1 or 0, i.e., the largest gap in query results across all data 
points is 1. Consequently, from the definition of sensitivity, the global sensitivity can be derived as Δ𝑓 = 1.

We demonstrate that our proposed DBDP satisfies differential privacy in the following Theorem 3.

Theorem 3. The algorithm DBDP satisfies 𝑚𝜖-DP.

Proof. The DBDP algorithm achieves differential privacy by employing the Laplace mechanism in two distinct stages. Firstly, it 
satisfies 𝑚𝜖1-DP during the core point identification stage. Secondly, 𝑚𝜖2-DP is maintained in the cluster expansion stage.

Consider datasets X and X′ such that X = X′ ∪ {x𝑡}. Discrepancies between two neighboring datasets can impact the density 
estimation (or 𝑒𝑝𝑠-neighborhood queries) of 𝑚 data points, where 𝑚 represents the maximum density within the dataset. We first 
provide the proof of this assertion.

Without loss of generality, suppose that the data point x1 can influence the 𝑒𝑝𝑠-neighborhood of ℎ points, indicating that the point 
resides within the 𝑒𝑝𝑠 radius of these ℎ points. Due to the symmetry of the 𝑒𝑝𝑠-neighborhoods, we infer that the 𝑒𝑝𝑠-neighborhood 
of x1 includes these ℎ points, thus having a density value of ℎ. In a dataset characterized by a maximum density of 𝑚, the removal 
6

of a data point could potentially affect the 𝑒𝑝𝑠-neighborhood outcomes for up to 𝑚 points.
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The above conclusion indicates that the density impact on the entire dataset is equivalent to the density impact on the 𝑚 data 
points, as expressed mathematically below.

𝑃𝑟[𝑀(X) = S]
𝑃𝑟[𝑀(X′) = S]

=
𝑃𝑟[𝑀X(x1) = 𝑆1]
𝑃𝑟[𝑀X′ (x1) = 𝑆1]

∧
𝑃𝑟[𝑀X(x2) = 𝑆2]
𝑃𝑟[𝑀X′ (x2) = 𝑆2]

∧

⋯ ∧
𝑃𝑟[𝑀X(x𝑚) = 𝑆𝑚]
𝑃𝑟[𝑀X′ (x𝑚) = 𝑆𝑚]

∧⋯ ∧
𝑃𝑟[𝑀X(x𝑛) = 𝑆𝑛]
𝑃𝑟[𝑀X′ (x𝑛) = 𝑆𝑛]

(4)

where 𝑃𝑟[⋅] represents the probability density function. The output results of the density estimation for X and X′ are denoted by 
𝑀[X] and 𝑀[X′], respectively. Additionally, S represents any possible density, with 𝑓X(⋅) being the true density function.

Next, we need to give an upper bound for Eq. (4). Without loss of generality, it can start by solving for the upper bound of one of 
the terms 𝑃𝑟[𝑀X(x1)=𝑆1]

𝑃𝑟[𝑀X′ (x1)=𝑆1]
. The derivation is as follows.

𝑃𝑟[𝑀X(x1) = 𝑆1]
𝑃𝑟[𝑀X′ (x1) = 𝑆1]

=
𝜖1
2Δ𝑓 𝑒𝑥𝑝(−

𝜖1||𝑆1−𝑓X(x1)||
Δ𝑓 )

𝜖1
2Δ𝑓 𝑒𝑥𝑝(−

𝜖1||𝑆1−𝑓X′ (x1)||
Δ𝑓 )

(5)

= 𝑒𝑥𝑝(
𝜖1(||𝑆1 − 𝑓X(x1)||− ||𝑆1 − 𝑓X′ (x1)||)

Δ𝑓
) (6)

≤ 𝑒𝑥𝑝(
𝜖1(||𝑓X(x1) − 𝑓X′ (x1)||)

Δ𝑓
) (7)

≤ 𝑒𝜖1 (8)

Eq. (5) is using 𝑃𝑟[𝑀X(x1) = 𝑆1] = 𝑃𝑟[𝐿𝑎𝑝(Δ𝑓∕𝜖1) = 𝑆 − 𝑓X(x1)] and for the same reason 𝑃𝑟[𝑀X′ (x1) = 𝑆1] = 𝑃𝑟[𝐿𝑎𝑝(Δ𝑓∕𝜖1) =
𝑆 −𝑓X′ (x1)]; Eq. (6) utilizes the power function property; Eq. (7) is using the properties of trigonometric inequalities; Eq. (8) is using 
the definition of global sensitivity: Δ𝑓 = max𝐗,X′ ||𝑓 (X) − 𝑓 (X′)|| ≥ ||𝑓X(x1) − 𝑓X′ (x1)||.

From Eqs. (5)-(8), it can be inferred that any point x𝑖 ∈ {x1… x𝑚} satisfies 𝑃𝑟[𝑀X(x𝑖)=𝑆𝑖]
𝑃𝑟[𝑀X′ (x𝑖)=𝑆𝑖]

≤ 𝑒𝜖1 . Bringing this into Eq. (4) gives the 
following result.

𝑃𝑟[𝑀(X) = S]
𝑃𝑟[𝑀(X′) = S]

≤ 𝑒𝜖1 ∗ 𝑒𝜖1 ⋯ ∗ 𝑒𝜖1
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑚

∗ 𝑒0 ∗⋯ ∗ 𝑒0
⏟⏞⏞⏞⏟⏞⏞⏞⏟

𝑛−𝑚

= 𝑒𝑚𝜖1 (9)

Therefore, the core point identification stage satisfies 𝑚𝜖1-DP.

Next, we give a proof of the cluster expansion stage. Given that we employ the Laplace mechanism for density computation in 
this stage, the proof process remains largely unchanged. The main difference lies in the assignment of the privacy budget, which 
is distributed across each cluster 𝜖221 ,

𝜖2
22 ,...,

𝜖2
2𝑘 , where k is the number of clusters. This allocation ensures that each cluster satisfies 

𝑚(𝜖2∕2𝑘)-DP, with the aggregate across all clusters not exceeding 𝑚𝜖2 differential privacy.

In summary, the DBDP algorithm preserves 𝑚(𝜖1 + 𝜖2)-DP, 𝜖 = 𝜖1 + 𝜖2. Therefore, we conclude that the DBDP algorithm preserves 
𝑚𝜖-DP.

Theorem 4. The algorithm DBDP has a time complexity of 𝑂(𝑛𝑙𝑜𝑔(𝑛)), where 𝑛 represents the number of data points.

Proof. In practical situations, datasets are usually non-uniformly distributed, so the average time complexity of DBSCAN is often 
close to 𝑂(𝑛𝑙𝑜𝑔(𝑛)), which is more efficient than the worst-case scenario(𝑂(𝑛2)). The algorithm DBDP uses the Laplace mechanism to 
satisfy differential privacy, which has a time complexity 𝑂(1), so the time complexity for DBDP is 𝑂(𝑛𝑙𝑜𝑔(𝑛)).

5. Experimental results

We investigate our algorithm’s performance as well as examine the privacy budget’s impact by comparing it to four private and 
one non-private clustering algorithms across eight datasets.

5.1. Experiment setup

Datasets. We evaluate performance using five synthetic datasets and five real-world datasets. The synthetic datasets include Moons, 
T0, Yinyang, T4, and T7. The real-world datasets include Haberman, Wine, Pageblocks, Penbased, and Htru2. These datasets are from 
the baseline clustering datasets1 and UCI Machine Learning Repository.2 Table 2 provides details of these datasets.

1 https://github .com /milaan9 /Clustering -Datasets.
7

2 https://archive .ics .uci .edu/.

https://github.com/milaan9/Clustering-Datasets
https://archive.ics.uci.edu/
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Table 2

The dataset utilized in the experiment.

Name #Instance #Feature #Class

Moons 1000 2 2

T0 2000 2 3

Yinyang 3200 2 5

T4 7326 2 6

T7 9208 2 9

Haberman 306 3 2

Wine 175 13 3

Pageblocks 5473 10 5

Penbased 10992 16 10

Htru2 17898 8 2

Baselines. Non-private baseline. We compare the outcomes of DBDP with those of a non-private DBSCAN, utilizing the implementation 
provided by Python’s scikit-learn library. We use the default parameter settings and run each dataset multiple times to obtain optimal 
performance.

Private baseline. To our knowledge, the majority of differentially private clustering algorithms are fundamentally based on the 
𝑘-means paradigm. We performed a comparison of our algorithm with three private baselines: Cohen-Addad [10], Balcan [27], 
and PrivKmeans [22]. In addition, we also compare our algorithm with the DP_DBSCAN [30] algorithm, which is based on density 
paradigm.

• The Cohen-Addad algorithm partitions the data points according to their LSH outputs, generates differentially private 𝑘-means, 
counts for each partition, and then runs a (non-private) 𝑘-means algorithm on the means with the counts as weights.

• The Balcan algorithm suggests first to selecting a small subset of candidate centers, which includes candidate centers with minimal 
𝑘-mean loss. Subsequently, a non-private clustering algorithm is executed for these candidate centers.

• The PrivKmeans algorithm uses Laplace or Gaussian noise in Lloyd’s iteration.

• The DP_DBSCAN algorithm adds Laplace noise in the distance metric to satisfy differential privacy.

Evaluation Metrics. In the experiment, we select the Micro-F1 Score (F1), Normalized Mutual Information (NMI), and the Fowlkes–

Mallows Index (FMI) as the evaluation criteria. F1, NMI, and FMI are widely used in clustering analysis. These evaluation metrics 
range from 0 to 1, with higher values indicating better performance. The evaluation of F1 is defined as:

𝐹1 = 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙
𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙

(10)

where 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 is the percentage of samples classified into specific category that truly within this category and 𝑅𝑒𝑐𝑎𝑙𝑙 represents 
the portion of actual instances belonging to a certain class that are correctly identified.

The evaluation of NMI is defined as:

𝑁𝑀𝐼 = 𝐼(L,P)√
𝐻(L)𝐻(P)

(11)

where L and P represent the true and predicted category labels. 𝐻(L) and 𝐻(P) are their entropies respectively, and 𝐼(L, P) is their 
cross entropy.

The evaluation of FMI is defined as:

𝐹𝑀𝐼 = 𝑇𝑃√
(𝑇𝑃 + 𝐹𝑃 )(𝑇𝑃 + 𝐹𝑁)

(12)

where 𝑇𝑃 represents the number of sample pairs that are actually in a category and predicted to be in a category, 𝐹𝑁 represents 
the number of sample pairs that are actually in a category but predicted not to be in a category, 𝐹𝑃 represents the number of sample 
pairs that are not in a category but predicted in a category, and 𝐹𝑁 represents the number of sample pairs that are not actually in a 
category and predicted not to be in a category.

5.2. Results on all datasets

These algorithms have several parameters. The specific range of values for each parameter is displayed in Table 3. 𝑒𝑝𝑠 is the 
distance threshold. 𝑚𝑖𝑛𝑃 𝑡𝑠 represents the smallest count of neighbors within a specified radius. 𝐾 is the amount of clusters and we 
set 𝐾 to the true number of classes.

On the density-based clustering paradigm, we select the optimal results within a specified parameter range and execute the 
algorithm multiple times to compute the average result. On the partition-based clustering paradigm, we set the parameter 𝑘 to match 
the true number of classes. We set the privacy budget 𝜖 in private algorithms to 10. We normalize all datasets. Based on Figs. 3-7, 
8

our algorithm demonstrates the capability to detect clusters of varying sizes and shapes.
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Table 3

Parameter settings.

Algorithm Parameters

DBDP 𝑒𝑝𝑠: [0.01:0.01:2.0]; 𝑚𝑖𝑛𝑃 𝑡𝑠: [2:1:200]

DBSCAN 𝑒𝑝𝑠: [0.01:0.01:2.0]; 𝑚𝑖𝑛𝑃 𝑡𝑠: [2:1:200]

DP_DBSCAN 𝑒𝑝𝑠: [0.01:0.001:2.0]; 𝑚𝑖𝑛𝑃 𝑡𝑠: [2:1:200]

Cohen-Addad 𝐾 : True number of classes

Balcan 𝐾 : True number of classes

PrivKmeans 𝐾 : True number of classes

Fig. 3. Clustering results on Moons.
9

Fig. 4. Clustering results on T0.
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Fig. 5. Clustering results on Yinyang.

Fig. 6. Clustering results on T4.

In Fig. 3, the data structure is composed of two crescent-shaped clusters with different densities. DP_DBSCAN can recognize 
clusters with arbitrary shapes, but some points are incorrectly classified as noise points. Cohen-Addad, Balcan, and PrivKmeans are 
based on the partition-based clustering paradigm, which cannot handle arbitrarily shaped datasets well, such as crescent-shaped 
ones. Therefore, they cluster the dataset incorrectly into two spherical-like classes in the final result. Whereas, DBDP is based on 
the density-based clustering paradigm, which can handle arbitrarily shaped datasets well and adaptively determines the number of 
clusters. The DBDP algorithm ultimately achieves highly consistent clustering results with DBSCAN while ensuring privacy.

In Fig. 4, the T0 dataset consists of three circular clusters. Notably, this dataset is imbalanced, with the majority of data concen-

trated in one class and only a small portion distributed across the other two classes. As shown in the first row of Fig. 4, the three 
10

density-based clustering algorithms correctly identify the overall structure of all clusters and produce accurate clustering results. In 
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Fig. 7. Clustering results on T7.

contrast, the three 𝑘-means algorithms (Cohen-Added, Balcan, and PrivKmeans) in the second row the still produce erroneous clus-

tering results despite handling with convex datasets. This is because the inherent uniform effect in 𝑘-means. Specifically, the 𝑘-means 
paradigm tends to distribute data points across clusters in a roughly equal manner due to the fact that it is designed to minimize the 
intra-cluster sum of squares. In contrast, DBSCAN and the two privacy-preserving DBSCAN algorithms (DBDP and DP_DBSCAN) accu-

rately detect all cluster structures. This is because these algorithms operate on the principles of density reachability and connectivity 
rather than the minimization of the intra-cluster sum of squares.

In Fig. 5, the Yinyang dataset resembles a yin-yang diagram, which consists of five differently shaped clusters. Our algorithm 
identifies the overall structure of all clusters correctly and produces a clustering result that is highly consistent with DBSCAN.

In Figs. 6 and 7, both T4 and T7 are datasets consisting of multiple shapes. Cohen-Addad, Balcan, and PrivKmeans fail to handle 
datasets with such complex-shaped clusters and produce poor clustering results. DP_DBSC AN incorrectly categorizes many points as 
noise points. DBSCAN and DBDP achieve satisfactory clustering results and their results are highly consistent.

Table 4 presents the quantitative outcomes for our algorithm and the five baselines on all datasets, including five synthetic and 
five real-world datasets, using F1, NMI, and FMI scores as evaluation metrics. The results on the real datasets are the best results 
obtained by each algorithm on each dataset, using different parameter values. Table 4 presents the highest and second-highest scores 
for each indicator in the respective dataset, denoted by bold and underlined formatting.

As shown in Table 4, DBDP achieves clustering performance comparable to that of DBSCAN on the five synthetic datasets. Evi-

dently, the clustering performance of our algorithm are significantly better than other privacy algorithms (DP_DBSCAN, Cohen-Addad, 
Balcan, and PrivKmeans) on these synthetic datasets. On five real-world datasets (Haberman, Wine, Pageblocks, Penbased, and Htru2), 
DBDP aligns closely with the performance of the DBSCAN algorithm and even outperforms it in certain cases. Nevertheless, other pri-

vate algorithms exhibit lower clustering performance compared to our algorithm. This is due to the fact that these real-world datasets 
have very complex data distributions. DBDP and DBSCAN algorithms can handle these complex distributions better than other com-

petitors. Differentially private clustering algorithms based on the K-means paradigm (Cohen-Added, Balcan and PrivKmeans) suffer 
from the issue of dividing non-spherical-like clusters into multiple spherical-like clusters when dealing with non-convex datasets, lead-

ing to poor clustering results. The DP_DBSCAN algorithm, which uses the Laplace mechanism over distance, misclassifies many normal 
points as noise, thereby affecting overall clustering performance. In summary, DBDP still has a clustering performance comparable 
to that of DBSCAN despite the incorporation of the differential privacy mechanism.

5.3. Approximation experiment

This subsection evaluates the approximation of private algorithms to their respective original counterparts. Here, we focus on the 
approximations of DBDP and DP_DBSCAN to their foundational algorithm, DBSCAN, as well as the approximations of Cohen-Addad, 
Balcan, and PrivKmeans to their original algorithm, K-Means. To facilitate the quantification and comparison of approximations, 
we develop an approximation metric scheme. We employ NMI to measure the clustering results of the two algorithms on the same 
dataset, serving as the approximation score (AS) between them. Obviously, the AS value range is [0,1]. The higher the AS, the better 
11

the approximation. For a given dataset, the parameter values 𝑒𝑝𝑠 and 𝑚𝑖𝑛𝑃 𝑡𝑠 in DBDP and DP_DBSCAN are aligned with the optimal 
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Table 4

Quantitative results in experiments.

Algorithm F1 NMI FMI Prams F1 NMI FMI Prams

Moons T0

DBDP 0.965 0.822 0.950 0.3/25 1.000 1.000 1.000 0.3/6

DBSCAN 0.969 0.864 0.961 0.3/25 1.000 1.000 1.000 0.5/40

DP_DBSCAN 0.718 0.752 0.921 0.26/32 0.260 0.900 0.896 0.26/42

Cohen-Addad 0.453 0.373 0.729 2 0.282 0.265 0.513 3

Balcan 0.438 0.448 0.776 2 0.497 0.486 0.663 3

PrivKmeans 0.413 0.375 0.736 2 0.053 0.431 0.635 3

Yinyang T4

DBDP 0.990 0.972 0.985 0.1/6 1.000 0.999 1.000 0.1/14

DBSCAN 0.999 0.993 0.998 0.1/6 1.000 1.000 1.000 0.1/10

DP_DBSCAN 0.148 0.347 0.491 0.18/78 0.311 0.546 0.517 0.08/68

Cohen-Addad 0.078 0.355 0.396 5 0.141 0.539 0.522 6

Balcan 0.125 0.323 0.517 5 0.105 0.491 0.557 6

PrivKmeans 0.072 0.248 0.334 5 0.195 0.562 0.549 6

T7 Haberman

DBDP 0.998 0.993 0.997 0.1/32 0.735 0.115 0.781 2.3/6

DBSCAN 0.998 0.994 0.996 0.1/32 0.739 0.115 0.781 2.3/6

DP_DBSCAN 0.180 0.180 0.426 0.09/104 0.137 0.101 0.626 0.33/2

Cohen-Addad 0.187 0.616 0.457 9 0.196 0.011 0.608 2

Balcan 0.147 0.464 0.448 9 0.581 0.017 0.781 2

PrivKmeans 0.195 0.642 0.479 9 0.582 0.017 0.644 2

Wine Pageblocks

DBDP 0.933 0.833 0.896 0.3/6 0.913 0.242 0.915 1.3/28

DBSCAN 0.938 0.809 0.878 0.3/6 0.913 0.242 0.915 1.3/10

DP_DBSCAN 0.657 0.758 0.852 0.2/5 0.902 0.242 0.915 0.69/30

Cohen-Addad 0.101 0.582 0.684 3 0.364 0.032 0.525 3

Balcan 0.659 0.657 0.581 3 0.392 0.093 0.723 3

PrivKmeans 0.607 0.625 0.729 3 0.452 0.164 0.655 3

Penbased Htru2

DBDP 0.887 0.881 0.831 0.3/40 0.964 0.601 0.967 0.1/25

DBSCAN 0.887 0.881 0.831 0.3/20 0.964 0.621 0.968 0.1/25

DP_DBSCAN 0.051 0.682 0.529 0.03/190 0.908 0.014 0.913 1.4/98

Cohen-Addad 0.090 0.804 0.721 10 0.345 0.120 0.681 2

Balcan 0.736 0.757 0.749 10 0.537 0.065 0.651 2

PrivKmeans 0.014 0.841 0.764 10 0.259 0.163 0.734 2

Fig. 8. AS values on all datasets.

configurations of the original DBSCAN algorithm when computing their respective approximations. Additionally, the privacy budget 
is set to 10. In partition-based clustering, we set 𝐾 to the number of true clusters in the dataset and the privacy budget to 10. Fig. 8

shows the results on five synthetic datasets and five real-world datasets. The vertical axis represents the approximation score. From 
Fig. 8, it can be seen that the DBDP algorithm achieves the highest AS on each dataset, with the AS values of the DBDP algorithm on 
Yinyang, T4, T7, and Penbased reaching 0.99. This indicates that the DBDP algorithm approaches the non-private clustering results 
12

as closely as possible while maintaining privacy.
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Fig. 9. Effect of privacy budget on Moons.

Fig. 10. Effect of privacy budget on T4.

Fig. 11. Effect of privacy budget on Wine.

5.4. Effect of privacy budget

This subsection investigates the implications of privacy budgets. We utilize two synthetic datasets, Moons and T4, and two real-

world datasets, Wine and Haberman. Figs. 9-12 depict the F1 and FMI metrics variation for each approach across four different 
datasets. As shown in Fig. 9, the F1 and FMI rates consistently increase as the privacy-preserving level 𝜖 varies from 0.01 to 10.0. 
This implies that lower privacy levels reduce usefulness. In Figs. 10-12, DBDP exhibits remarkably smooth performance, whereas the 
other algorithms display significant fluctuations. Overall, DBDP is less sensitive to the privacy budget and demonstrates a notably 
stable performance across various parameter values.

5.5. Running time

This subsection examines the algorithms’ runtime performance. Experiments are conducted to compare their runtimes across the 
datasets detailed in Section 5.1. As shown in Fig. 13, the large figure displays the runtime of all algorithms. For clarity, the small 
13

figure excludes the runtime of the DP_DBSCAN algorithm. The horizontal axis represents the names of the datasets, comprising five 
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Fig. 12. Effect of privacy budget on Haberman.

Fig. 13. Running time on all datasets.

real and five synthetic datasets. The vertical axis represents the time in seconds. Each point in the figure represents the running 
time of each algorithm on each dataset. The running time of DBDP is faster than DP_DBSCAN, comparable to that of DBSCAN, and 
slower than that of 𝑘-means paradigm. Compared to the density-based differentially private clustering algorithm DP_DBSCAN, DBDP 
is more efficient. This is because our algorithm injects noise satisfying differential privacy during the density estimation stage, rather 
than during the distance metric. Although DBDP modifies the density estimation method in the original DBSCAN, it does not reduce 
execution efficiency compared to the non-privacy density clustering algorithm DBSCAN. While our algorithm’s running time is slightly 
slower than that of the differentially private algorithm in the 𝑘-means paradigm, this is due to the inherent properties of the DBSCAN 
algorithm. However, it is noteworthy that DBDP mostly has a better running time than PrivKmeans. This demonstrates that the DBDP 
algorithm successfully incorporates privacy-preserving mechanisms into DBSCAN without sacrificing efficiency.

6. Conclusion

We introduce a new private clustering algorithm DBDP. The algorithm is based on the DBSCAN paradigm. This approach inherits 
the benefits of DBSCAN, particularly its ability to identify clusters with arbitrary shapes, while satisfying the differential privacy. 
Specifically, we introduce a modification to the DBSCAN algorithm by incorporating Laplace noise and demonstrate that this algo-

rithm adheres to the principles of differential privacy. In addition, we experimentally demonstrate that our algorithm outperforms 
current differentially private clustering algorithms and has performance comparable to the original DBSCAN. This algorithm is more 
suitable for non-convex shape data, making it applicable to a wider range of scenarios compared to other differentially private clus-

tering algorithms. The proposed algorithm enhances data sharing and collaboration, thereby advancing data-driven research and 
cooperation. Additionally, the use of DBDP mitigates algorithmic bias, promoting fairness. The main drawback of our algorithm is 
14

the excessive computation time required for handling large and complex datasets. Future research directions include exploring data 
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compression techniques to address the challenges of large and complex datasets. Another research direction involves using opti-

mization algorithms to enhance the efficiency of DBDP, such as the geyser-inspired algorithm [41] and the prairie dog optimization 
algorithm [42].
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